FINDING FINITE B_{2}-SEQUENCES FASTER

BERNT LINDSTRÖM

Abstract

A B_{2}-sequence is a sequence $a_{1}<a_{2}<\cdots<a_{r}$ of positive integers such that the sums $a_{i}+a_{j}, 1 \leq i \leq j \leq r$, are different. When q is a power of a prime and θ is a primitive element in $G F\left(q^{2}\right)$ then there are B_{2}-sequences $A(q, \theta)$ of size q with $a_{q}<q^{2}$, which were discovered by R. C. Bose and S. Chowla.

In Theorem 2.1 I will give a faster alternative to the definition. In Theorem 2.2 I will prove that multiplying a sequence $A(q, \theta)$ by integers relatively prime to the modulus is equivalent to varying θ. Theorem 3.1 is my main result. It contains a fast method to find primitive quadratic polynomials over $G F(p)$ when p is an odd prime. For fields of characteristic 2 there is a similar, but different, criterion, which I will consider in "Primitive quadratics reflected in B_{2}-sequences", to appear in Portugaliae Mathematica (1999).

1. Introduction

A sequence of positive integers $a_{1}<a_{2}<\cdots<a_{r}$ is called a B_{2}-sequence (or Sidon sequence) if the sums $a_{i}+a_{j}, 1 \leq i \leq j \leq r$, are different. Erdös and Turán proved in [4] that $a_{r} \leq n$ implies that $r<n^{1 / 2}+O\left(n^{1 / 4}\right)$. This was improved by the author in [5] to $r<n^{1 / 2}+n^{1 / 4}+1$. Erdös asked in [3] if $r<n^{1 / 2}+C$ is true for a constant C.
B_{2}-sequences with $r>n^{1 / 2}$ are known to exist by a theorem of Bose and Chowla [1]. Let q be a power of a prime and θ primitive in $G F\left(q^{2}\right)$; then

$$
\begin{equation*}
A(q, \theta)=\left\{a: 1 \leq a<q^{2}, \theta^{a}-\theta \in G F(q)\right\} \tag{1.1}
\end{equation*}
$$

will give a B_{2}-sequence of size q. These Bose-Chowla B_{2}-sequences have the stronger property that the sums $a_{i}+a_{j}, 1 \leq i \leq j \leq q$, are different modulo $q^{2}-1$. This has important consequences for the problem of Erdös, which Zhang noticed and used in [7].

By Lemma 3.3 in [7], if $\left\{a_{i}\right\}_{1}^{r}$ is a B_{2}-sequence $(\bmod m)$, then $\left\{a_{i}+b\right\}_{1}^{r}$ will also be a B_{2}-sequence $(\bmod m)$ for any integer b. Assume that $a_{1}<a_{2}<\cdots<a_{r}$ and define $a_{r+1}=a_{1}+m$. Determine the largest interval $\left(a_{i}, a_{i+1}\right)$ for $1 \leq i \leq r$. Let $b=m+1-a_{i+1}$. Then the largest number in the new sequence is, in general, smaller.

Another idea of Zhang was to generate a large number of B_{2}-sequences for each q by varying the primitive element $\theta \in G F\left(q^{2}\right)$. There are $\varphi\left(q^{2}-1\right)$ primitive elements θ, where φ is Euler's function. This number can be reduced to

[^0]$\varphi\left(q^{2}-1\right) / 4$ due to symmetries of the B_{2}-sequences. Then he determines one with largest possible interval giving a smallest possible upper bound by the previous idea. It is laborious to check each time that θ is primitive. But it is only necessary to do this for one $A(q, \theta)$. The other sequences can be found if we multiply the sequence by integers which are relatively prime to $q^{2}-1$ and reduce modulo $q^{2}-1$. This is contained in Theorem 2.2. In Theorem 2.1 I prove that $A(q, \theta)$ can be determined q times faster than suggested by (1.1).

Zhang considered only the case when $q=p$ is an odd prime. To check that θ is primitive in $G F\left(p^{2}\right)$ he used the following necessary and sufficient conditions: (i) θ^{p+1} is primitive in $G F(p)$; (ii) $\theta, \theta^{2}, \ldots, \theta^{p} \notin G F(p)$ (Lemma 4.3 in [7]).

In Theorem 3.1 I give a new criterion for θ to be primitive in $G F\left(p^{2}\right)$. If θ satisfies the quadratic equation $\theta^{2}=u \theta-v$ with $u, v \in G F(p)$ my criterion poses conditions on u^{2} / v and v.

2. Finding $A(q, \theta)$ faster

In this section I will assume that q is a power of a prime. The following Lemma 2.2 generalizes Lemma 4.3 in [7].

Lemma 2.1. Let θ be a root of an irreducible quadratic $X^{2}-u X+v$ with u, $v \in G F(q)$. Then we have

$$
\begin{equation*}
\theta^{q}+\theta=u, \quad \theta^{q+1}=v \tag{2.1}
\end{equation*}
$$

Proof. There are two roots θ and θ^{q}. The relations (2.1) follow since u is the sum and v is the product of the roots of the quadratic.
Lemma 2.2. Let $\theta \in G F\left(q^{2}\right)$ and write $\theta^{q+1}=v$. Then θ is a primitive element if and only if
(i) $\theta^{i} \notin G F(q)$ for $1 \leq i \leq q$; and
(ii) $\operatorname{order}(v)=q-1$.

Proof. Assume that θ is primitive in $G F\left(q^{2}\right)$. Then $\operatorname{order}(\theta)=q^{2}-1$. If $\theta^{i} \in G F(q)$ for some $i, 1 \leq i \leq q$, then $\theta^{i(q-1)}=1$ gives a contradiction. Therefore (i) holds. If $\operatorname{order}(v)=n<q-1$, then $\theta^{(q+1) n}=1$ gives another contradiction since ($q+1$) $n<q^{2}-1$. Therefore (ii) holds.

Conversely, assume that (i) and (ii) are satisfied. Note that $v \in G F(q)$ since $v^{q-1}=\theta^{q^{2}-1}=1$. Let $\operatorname{order}(\theta)=n=(q+1) k+r, 0 \leq r \leq q$. Then $\theta^{n}=1$ implies that $\theta^{r}=v^{-k} \in G F(q)$ and $r=0$ follows by (i). Then $v^{k}=1$ and $k=q-1$ follows by (ii). Hence $n=q^{2}-1$.

Let θ be primitive in $G F\left(q^{2}\right)$. Define u_{i} and $v_{i} \in G F(q)$ by

$$
\begin{equation*}
\theta^{i}=u_{i} \theta-v_{i} \tag{2.2}
\end{equation*}
$$

We have $u_{i} \neq 0$ for $1 \leq i \leq q$ by Lemma 2.2(i). Since v is primitive in $G F(q)$ by (ii), there are integers t_{i} such that

$$
\begin{equation*}
u_{i}=v^{t_{i}}=\theta^{(q+1) t_{i}}, \quad 1 \leq i \leq q . \tag{2.3}
\end{equation*}
$$

If we divide (2.2) by u_{i}, then we find

$$
\begin{equation*}
\theta^{i-(q+1) t_{i}}-\theta=-v_{i} u_{i}^{-1} \in G F(q) \tag{2.4}
\end{equation*}
$$

and since, by definition

$$
\begin{equation*}
A(q, \theta)=\left\{a: 1 \leq a<q^{2}, \theta^{a}-\theta \in G F(q)\right\} \tag{2.5}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
i-(q+1) t_{i} \in A(q, \theta), \quad 1 \leq i \leq q . \tag{2.6}
\end{equation*}
$$

We have
Theorem 2.1. Let θ be a primitive element in $G F\left(q^{2}\right)$ and define the integers t_{i} for $1 \leq i \leq q$ by (2.3) and $A(q, \theta)$ by (2.5). Then we have

$$
\begin{equation*}
A(q, \theta)=\left\{i-(q+1) t_{i}\left(\bmod q^{2}-1\right): 1 \leq i \leq q\right\} . \tag{2.7}
\end{equation*}
$$

Proof. With regard to (2.6) it remains to prove that the elements are distinct modulo $q^{2}-1$. If $i-(q+1) t_{i} \equiv j-(q+1) t_{j}\left(\bmod q^{2}-1\right)$, then $i \equiv j(\bmod q+1)$ and we have $i=j$ since $1 \leq i, j \leq q$.
Example 2.1. Let $q=7$ and $\theta^{2}=\theta-3$ (cf. Example 3.1 in [7]). We find $u_{1}=$ $u_{2}=1, u_{3}=5, u_{4}=2, u_{5}=1, u_{6}=2, u_{7}=3$ and, since $v=3, t_{1}=t_{2}=0$, $t_{3}=5, t_{4}=2, t_{5}=0, t_{6}=2, t_{7}=3$, which gives $A(7, \theta)=\{1,2,5,11,31,36,38\}$ after sorting.

If c is relatively prime to $q^{2}-1$, then $M_{c}(x)=c x$ defines a one-one mapping of the integers modulo $q^{2}-1$. For any integer t we define another one-one mapping $\left(\bmod q^{2}-1\right)$ by $T_{t}(x)=x-(q+1) t$.

Theorem 2.2. Let θ and θ_{1} be primitive elements in $G F\left(q^{2}\right)$ and $\theta=\theta_{1}^{c}=u_{c} \theta_{1}-$ $v_{c}\left(u_{c}, v_{c} \in G F(q)\right), u_{c}=\theta_{1}^{(q+1) t}$. Then $A\left(q, \theta_{1}\right)=T_{t} M_{c} A(q, \theta)$.
Proof. Let $a \in A(q, \theta)$. Then we have $\theta^{a}-\theta \in G F(q)$ and $\theta_{1}^{c a}-u_{c} \theta_{1} \in G F(q)$. If we divide this by $u_{c}(\neq 0)$, we find that $c a-(q+1) t \in A\left(q, \theta_{1}\right)$ and $T_{t} M_{c} A(q, \theta)=$ $A\left(q, \theta_{1}\right)$ follows since both sets have q elements.

3. A criterion for primitive quadratics

I will prove a new criterion for a quadratic $X^{2}-u X+v$ over $G F(p), p$ an odd prime, to be primitive, i.e., with a root θ, which is a primitive element in $G F\left(p^{2}\right)$. I am looking for a criterion which is suitable for computations and faster than the one in Lemma 2.2. There is a criterion by Bose, Chowla and Rao, Theorem 3A in [2], which depends on cyclotomic polynomials. I do not think it is what I am looking for, but I have use of the integral order of $\alpha \in G F\left(p^{2}\right)$. It is the least positive number n for which $\alpha^{n} \in G F(p)$. I found this notion in [2].

I will need polynomials $Q_{m}(X)$ of degree $m \geq 0$ defined recursively by

$$
\begin{gather*}
Q_{0}(X)=1, \quad Q_{1}(X)=X \tag{3.1}\\
Q_{m+1}(X)=X Q_{m}(X)-Q_{m-1}(X) \quad \text { when } m \geq 1 \tag{3.2}
\end{gather*}
$$

Lemma 3.1. Let α be a root of the irreducible quadratic $X^{2}-u X+v$ over $G F(p)$ with $u, v \neq 0$. Write $u^{2} / v=w$ and let $n=2(m+1)$. Then $\left(\alpha^{2} / v\right)^{n}=1$ if and only if $Q_{m}(w-2)=0$.
Proof. We have $\left(\alpha^{2}+v\right)^{2}=u^{2} \alpha^{2}$. Hence $\alpha^{4}+\dot{v}^{2}=\left(u^{2}-2 v\right) \alpha^{2}$ and

$$
\begin{equation*}
\left(\alpha^{2} / v\right)+\left(v / \alpha^{2}\right)=w-2 \tag{3.3}
\end{equation*}
$$

Write $\alpha^{2} / v=\beta$ for brevity. Observe that $\beta \neq \pm 1$. Hence $\beta^{2}-1 \neq 0$.
Assume that $\beta^{n}=1, n=2(m+1)$. If we divide $\beta^{n}-1=0$ by $\beta^{2}-1 \neq 0$ we find $\beta^{2 m}+\beta^{2 m-2}+\cdots+1=0$. Divide this by β^{m}. Now

$$
\begin{equation*}
\beta^{m}+\beta^{m-2}+\cdots+\beta^{-m}=0 . \tag{3.4}
\end{equation*}
$$

The left-hand side of (3.4) can be written as a polynomial in $\beta+\beta^{-1}$. In fact, it is $Q_{m}\left(\beta+\beta^{-1}\right)$. For obviously $Q_{1}(X)=X, Q_{2}(X)=X^{2}-2$ and (3.2) follows since $\left(\beta+\beta^{-1}\right) Q_{m}\left(\beta+\beta^{-1}\right)=\left(Q_{m+1}+Q_{m-1}\right)\left(\beta+\beta^{-1}\right)$. Since $\beta+\beta^{-1}=w-2$ by (3.3), we have $Q_{m}(w-2)=0$.

Conversely, assume that $Q_{m}(w-2)=0$. Then, working backward, we find that $\beta^{n}=1$.

Lemma 3.2. If $\alpha^{m} \in G F(p)$ and n is the integral order of α, then $n \mid m$.
Proof. Write $m=k n+r, 0 \leq r<n$. Then $\alpha^{r}=\alpha^{m}\left(\alpha^{n}\right)^{-k} \in G F(p)$ and $r=0$ follows by the definition of n.

Theorem 3.1. Consider a quadratic $X^{2}-u X+v$ with $u, v \in G F(p), v \neq 0$ and p an odd prime. Write $u^{2} / v=w$. The quadratic is primitive if and only if the following conditions are satisfied ((iv) or (iv'))
(i) v is primitive $(\bmod p)$,
(ii) $w \not \equiv 0$ is a quadratic nonresidue $(\bmod p)$,
(iii) $w-4$ is a quadratic residue $(\bmod p)$,
(iv) $Q_{m}(w-2) \not \equiv 0(\bmod p)$ when $m \leq[(p+1) / 6]-1$,
(iv') for all odd primes q dividing $p+1 Q_{m(q)}(w-2) \not \equiv 0(\bmod p)$, where $m(q)=$ $((p+1) / 2 q)-1$.

Proof. When we prove the necessity of one condition we may assume that the preceding ones are satisfied.

Condition (i) is necessary by Lemma 2.2(ii). Assume that (i) holds. Then v is nonsquare in $G F(p)$. It follows that w is nonsquare in $G F(p)$ ($u=0$ is impossible). This gives (ii). A primitive quadratic is irreducible. Then the discriminant $u^{2}-4 v$ must be nonsquare in $G F(p)$. If we divide by nonsquare v we will get a square by the rules. This is (iii).

Assume that the conditions (i)-(iii) are satisfied. The quadratic is then irreducible and we have $v=\theta^{p+1}$ by Lemma 2.1, where θ is a root.

Assume that $Q_{m}(w-2) \equiv 0(\bmod p)$ for some $m \leq[(p+1) / 6]-1$. By Lemma 3.1 we have $1=\left(v / \theta^{2}\right)^{n}=\theta^{(p-1) n}$ with $n \leq(p+1) / 3$. This is impossible when θ is a primitive element in $G F\left(p^{2}\right)$. This gives (iv) and (iv').

Assume that (i)-(iii) and (iv') are satisfied. Let n be the integral order of θ. Since $\theta^{p+1}=v \in G F(p), p+1=k n$ follows by Lemma 3.2.

Note that v is nonsquare in $G F(p)$ and $v=\theta^{p+1}=\left(\theta^{n}\right)^{k}, \theta^{n} \in G F(p)$. It follows that k is an odd integer. We claim that $k=1$.

Assume that $k>1$. Let q be an odd prime divisor of k. Then $\bar{n}=(p+1) / q$ will be a multiple of $n=(p+1) / k$. Observe that $\left(v / \theta^{2}\right)^{n}=\theta^{n(p-1)}=1$ since $\theta^{n} \in G F(p)$. Then we have $\left(\theta^{2} / v\right)^{\bar{n}}=1$. By Lemma 3.1 it follows that $Q_{m(q)}(w-2) \equiv 0(\bmod p)$, a contradiction to (iv'). Therefore $k=1$ and $n=p+1$.

We have proved that the integral order of θ is $p+1$. I will prove that this implies that θ is primitive. If $N=\operatorname{order}(\theta)$, then $\theta^{N}=1$ and we have $n \mid N$ by Lemma 3.2 , i.e., $p+1 \mid N$. Write $N=(p+1) a$ and we find that $1=\theta^{N}=v^{a}$. Since v is primitive in $G F(p)$, it follows that $p-1 \mid a$. Hence $N=p^{2}-1$, which was to be proved.

In calculations using a computer one could use (iv) and (3.1), (3.2). If the calculations are done by hand, then (iv') is better. In both cases start with a list L1 of all quadratic nonresidues $(\bmod p)$. The length of this list is $(p-1) / 2$. Delete
from this list all integers w for which $w-4(\bmod p)$ belongs to the list. Then we obtain a list L2, which is about half as long (the length of L 2 is $(p+1) / 4$ when -1 is a quadratic nonresidue $(\bmod p)$ and $(p-1) / 4$ when -1 is a quadratic residue $(\bmod p))$. Then go to (iv) or (iv') and check the numbers in L2. Suppose we have found a number w, which satisfies all four conditions. Then find a primitive element $(\bmod p)$ from a table and determine u such that $u^{2} \equiv v w(\bmod p)$. Then we have the coefficients u and v of a primitive polynomial. If we apply (iv) or (iv') to all numbers on the list L2 we may determine all primitive quadratic polynomials.

It is easy to prove by induction over $m \geq 1$ that

$$
Q_{m}(X)=\sum_{i=1}^{[m / 2]}(-1)^{i}\binom{m-i}{i} X^{m-2 i}
$$

Example 3.1. Let $p=29$. The odd primes dividing $p+1$ are 3 and 5 . We find that $m(3)=4$ and $m(5)=2$. We have $Q_{2}(X)=X^{2}-1, Q_{4}(X)=X^{4}-3 X^{2}+1$. The list of quadratic nonresidues is $\mathrm{L} 1=\{2,3,8,10,11,12,14,15,17,18,19,21,26,27\}$. We delete all w for which $w-4$ belongs to the list and find $\mathrm{L} 2=\{3,8,10,11,17,26,27\}$. From L2 we delete " 3 " since $3-2=1$ is a root of Q_{2} and we delete " 8 " and " 26 " because 6 and 24 are roots of $Q_{4}(\bmod 29)$. There remains: $10,11,17,27$, which satisfy conditions (ii), (iii) and (iv'). There are $\varphi(28)=12$ primitive elements v in $G F(29)$. Hence there are $4 \cdot 12 \cdot 2=96$ primitive polynomials (4 numbers w, 12 numbers v, and 2 numbers u for each combination of v and w). This gives 192 primitive elements in $G F\left(29^{2}\right)$ in agreement with $\varphi\left(29^{2}-1\right)=192$. If we choose $w=10$ and $v=2$, we find $u=7$ (or -7) and $X^{2} \angle 7 X+2$ is a primitive polynomial $(\bmod 29)$.
Corollary. If $p=2^{k}-1$ is a (Mersenne) prime or if $p=2 q-1$ for an odd prime q, then the conditions (i)-(iii) are necessary and sufficient for the quadratic $X^{2}-u X+v$ to be primitive.

Proof. In the first case (iv') is vacuously satisfied. In the second case $m(q)=0$ and $Q_{0}=1$.

4. A VERY FAST CONSTRUCTION

There is a new construction of B_{2}-sequences by I. Z. Ruzsa in [6], Theorem 4.4, which gives B_{2}-sequences of the size $p-1$ for each odd prime p. The computations are straightforward and therefore very fast. I have extended the construction by the introduction of a factor f, an integer in $1 \leq f<p-1$, which is relatively prime to $p-1$. Let g be a primitive element $\bmod p$ and define

$$
\begin{equation*}
R(p, f)=\left\{p f i+(p-1) g^{i} \bmod p(p-1): 1 \leq i \leq p-1\right\} \tag{4.1}
\end{equation*}
$$

The integers of $R(p, f)$ are smaller than $p(p-1)$.
Theorem 4.1. $R(p, f)$ is a B_{2}-sequence modulo $p(p-1)$.
Proof. Let $p f(i+j)+(p-1)\left(g^{i}+g^{j}\right) \equiv a(\bmod p(p-1))$ be the sum of two elements. Then we find

$$
\begin{equation*}
g^{i}+g^{j} \equiv-a(\bmod p) \tag{4.2}
\end{equation*}
$$

and $f(i+j) \equiv a(\bmod p-1)$. Since f is relatively prime to $p-1$, there is an integer h such that $f h \equiv 1(\bmod p-1)$. It follows that $i+j \equiv a h(\bmod p-1)$ and we have
by Fermat's little theorem

$$
\begin{equation*}
g^{i} g^{j} \equiv g^{a h}(\bmod p) \tag{4.3}
\end{equation*}
$$

By (4.2) and (4.3) g^{i} and g^{j} are the roots of $X^{2}+a X+g^{a h}=0$ in $G F(p)$. Hence, g^{i} and g^{j} are unique and determine $\{i, j\}$ uniquely.

If we replace the primitive element g by another primitive g^{b} we will get $R(p, f d)$, where $b d \equiv 1(\bmod p-1)$. If we multiply $R(p, f)$ by an integer c relatively prime to $p(p-1)$ we get a translate of $R(p, f c)$. Thus we have essentially only $\varphi(p-1)$ B_{2}-sequences for each prime p. This "count" is much smaller than the count of the Bose-Chowla sequences $A(p, \theta)$. The estimates for C using $R(p, f)$ are worse than those of $A(p, \theta)$.

References

1. R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962-63), 141-147. MR 26:2418
2. R. C. Bose, S. Chowla and C. R. Rao, On the integral order $(\bmod p)$ of quadratics $x^{2}+a x+b$, with applications to the construction of minimum functions for $G F\left(p^{2}\right)$ and to some number theory results, Bull. Calcutta Math. Soc. 36 (1944), 153-174. MR 6:256b
3. P. Erdös, Quelques problèmes de la théorie des nombres, Monographies de l'Enseignement Math., No. 6 (Genève 1963), Problème 31. MR 28:2070
4. P. Erdös and P. Turán, On a problem in additive number theory, J. London Math. Soc. 16 (1941), 212-215; ibid 19 (1944), 208.
5. B. Lindström, An inequality for B_{2}-sequences, J. Comb. Theory 6 (1969), 211-212. MR 38:4436
6. I. Z. Ruzsa, Solving a linear equation in a set of integers, Acta Arith. 65 (1993), 259-282. MR 94k:11112
7. Z. Zhang, Finding finite B_{2}-sequertces with larger $m-a_{m}^{1 / 2}$, Math. Comp. 63 (1994), 403-414. MR 94i:11109

Department of Mathematics, Royal Institute of Technology, S-100 44, Stockholm, Sweden

Current address: Turbingränd 18, S-17675 Järfälla, Sweden

[^0]: Received by the editor November 21, 1996.
 1991 Mathematics Subject Classification. Primary 11B75, 11Y55, 12E20.
 Key words and phrases. B_{2}-sequence, Bose-Chowla theorem, finite field, primitive element, primitive quadratic.

