FINDING FINITE B_2 -SEQUENCES FASTER

BERNT LINDSTRÖM

ABSTRACT. A B_2 -sequence is a sequence $a_1 < a_2 < \cdots < a_r$ of positive integers such that the sums $a_i + a_j$, $1 \le i \le j \le r$, are different. When q is a power of a prime and θ is a primitive element in $GF(q^2)$ then there are B_2 -sequences $A(q,\theta)$ of size q with $a_q < q^2$, which were discovered by R. C. Bose and S. Chowla.

In Theorem 2.1 I will give a faster alternative to the definition. In Theorem 2.2 I will prove that multiplying a sequence $A(q,\theta)$ by integers relatively prime to the modulus is equivalent to varying θ . Theorem 3.1 is my main result. It contains a fast method to find primitive quadratic polynomials over GF(p) when p is an odd prime. For fields of characteristic 2 there is a similar, but different, criterion, which I will consider in "Primitive quadratics reflected in B_2 -sequences", to appear in $Portugaliae\ Mathematica\ (1999)$.

1. Introduction

A sequence of positive integers $a_1 < a_2 < \cdots < a_r$ is called a B_2 -sequence (or Sidon sequence) if the sums $a_i + a_j$, $1 \le i \le j \le r$, are different. Erdös and Turán proved in [4] that $a_r \le n$ implies that $r < n^{1/2} + O(n^{1/4})$. This was improved by the author in [5] to $r < n^{1/2} + n^{1/4} + 1$. Erdös asked in [3] if $r < n^{1/2} + C$ is true for a constant C.

 B_2 -sequences with $r > n^{1/2}$ are known to exist by a theorem of Bose and Chowla [1]. Let q be a power of a prime and θ primitive in $GF(q^2)$; then

(1.1)
$$A(q, \theta) = \{a : 1 \le a < q^2, \theta^a - \theta \in GF(q)\}$$

will give a B_2 -sequence of size q. These Bose-Chowla B_2 -sequences have the stronger property that the sums $a_i + a_j$, $1 \le i \le j \le q$, are different modulo $q^2 - 1$. This has important consequences for the problem of Erdös, which Zhang noticed and used in [7].

By Lemma 3.3 in [7], if $\{a_i\}_1^r$ is a B_2 -sequence (mod m), then $\{a_i+b\}_1^r$ will also be a B_2 -sequence (mod m) for any integer b. Assume that $a_1 < a_2 < \cdots < a_r$ and define $a_{r+1} = a_1 + m$. Determine the largest interval (a_i, a_{i+1}) for $1 \le i \le r$. Let $b = m+1-a_{i+1}$. Then the largest number in the new sequence is, in general, smaller.

Another idea of Zhang was to generate a large number of B_2 -sequences for each q by varying the primitive element $\theta \in GF(q^2)$. There are $\varphi(q^2-1)$ primitive elements θ , where φ is Euler's function. This number can be reduced to

Received by the editor November 21, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11B75, 11Y55, 12E20.

 $Key\ words\ and\ phrases.\ B_2$ -sequence, Bose-Chowla theorem, finite field, primitive element, primitive quadratic.

 $\varphi(q^2-1)/4$ due to symmetries of the B_2 -sequences. Then he determines one with largest possible interval giving a smallest possible upper bound by the previous idea. It is laborious to check each time that θ is primitive. But it is only necessary to do this for one $A(q,\theta)$. The other sequences can be found if we multiply the sequence by integers which are relatively prime to q^2-1 and reduce modulo q^2-1 . This is contained in Theorem 2.2. In Theorem 2.1 I prove that $A(q,\theta)$ can be determined q times faster than suggested by (1.1).

Zhang considered only the case when q=p is an odd prime. To check that θ is primitive in $GF(p^2)$ he used the following necessary and sufficient conditions: (i) θ^{p+1} is primitive in GF(p); (ii) θ , θ^2 ,..., $\theta^p \notin GF(p)$ (Lemma 4.3 in [7]).

In Theorem 3.1 I give a new criterion for θ to be primitive in $GF(p^2)$. If θ satisfies the quadratic equation $\theta^2 = u\theta - v$ with $u, v \in GF(p)$ my criterion poses conditions on u^2/v and v.

2. Finding $A(q, \theta)$ faster

In this section I will assume that q is a power of a prime. The following Lemma 2.2 generalizes Lemma 4.3 in [7].

Lemma 2.1. Let θ be a root of an irreducible quadratic $X^2 - uX + v$ with u, $v \in GF(q)$. Then we have

(2.1)
$$\theta^q + \theta = u, \qquad \theta^{q+1} = v.$$

Proof. There are two roots θ and θ^q . The relations (2.1) follow since u is the sum and v is the product of the roots of the quadratic.

Lemma 2.2. Let $\theta \in GF(q^2)$ and write $\theta^{q+1} = v$. Then θ is a primitive element if and only if

- (i) $\theta^i \notin GF(q)$ for $1 \leq i \leq q$; and
- (ii) order(v) = q 1.

Proof. Assume that θ is primitive in $GF(q^2)$. Then $\operatorname{order}(\theta) = q^2 - 1$. If $\theta^i \in GF(q)$ for some $i, 1 \leq i \leq q$, then $\theta^{i(q-1)} = 1$ gives a contradiction. Therefore (i) holds. If $\operatorname{order}(v) = n < q - 1$, then $\theta^{(q+1)n} = 1$ gives another contradiction since $(q+1)n < q^2 - 1$. Therefore (ii) holds.

Conversely, assume that (i) and (ii) are satisfied. Note that $v \in GF(q)$ since $v^{q-1} = \theta^{q^2-1} = 1$. Let $\operatorname{order}(\theta) = n = (q+1)k+r$, $0 \le r \le q$. Then $\theta^n = 1$ implies that $\theta^r = v^{-k} \in GF(q)$ and r = 0 follows by (i). Then $v^k = 1$ and k = q-1 follows by (ii). Hence $n = q^2 - 1$.

Let θ be primitive in $GF(q^2)$. Define u_i and $v_i \in GF(q)$ by

$$\theta^i = u_i \theta - v_i.$$

We have $u_i \neq 0$ for $1 \leq i \leq q$ by Lemma 2.2(i). Since v is primitive in GF(q) by (ii), there are integers t_i such that

(2.3)
$$u_i = v^{t_i} = \theta^{(q+1)t_i}, \qquad 1 \le i \le q.$$

If we divide (2.2) by u_i , then we find

(2.4)
$$\theta^{i-(q+1)t_i} - \theta = -v_i u_i^{-1} \in GF(q)$$

and since, by definition

(2.5)
$$A(q, \theta) = \{a : 1 \le a < q^2, \theta^a - \theta \in GF(q)\},$$

it follows that

(2.6)
$$i - (q+1)t_i \in A(q,\theta), \quad 1 \le i \le q.$$

We have

Theorem 2.1. Let θ be a primitive element in $GF(q^2)$ and define the integers t_i for $1 \le i \le q$ by (2.3) and $A(q, \theta)$ by (2.5). Then we have

(2.7)
$$A(q,\theta) = \{i - (q+1)t_i \pmod{q^2 - 1} : 1 \le i \le q\}.$$

Proof. With regard to (2.6) it remains to prove that the elements are distinct modulo $q^2 - 1$. If $i - (q+1)t_i \equiv j - (q+1)t_j \pmod{q^2 - 1}$, then $i \equiv j \pmod{q + 1}$ and we have i = j since $1 \le i, j \le q$.

Example 2.1. Let q = 7 and $\theta^2 = \theta - 3$ (cf. Example 3.1 in [7]). We find $u_1 = u_2 = 1$, $u_3 = 5$, $u_4 = 2$, $u_5 = 1$, $u_6 = 2$, $u_7 = 3$ and, since v = 3, $t_1 = t_2 = 0$, $t_3 = 5$, $t_4 = 2$, $t_5 = 0$, $t_6 = 2$, $t_7 = 3$, which gives $A(7, \theta) = \{1, 2, 5, 11, 31, 36, 38\}$ after sorting.

If c is relatively prime to $q^2 - 1$, then $M_c(x) = cx$ defines a one-one mapping of the integers modulo $q^2 - 1$. For any integer t we define another one-one mapping $(\text{mod } q^2 - 1)$ by $T_t(x) = x - (q+1)t$.

Theorem 2.2. Let θ and θ_1 be primitive elements in $GF(q^2)$ and $\theta = \theta_1^c = u_c\theta_1 - v_c(u_c, v_c \in GF(q)), \ u_c = \theta_1^{(q+1)t}$. Then $A(q, \theta_1) = T_t M_c A(q, \theta)$.

Proof. Let $a \in A(q, \theta)$. Then we have $\theta^a - \theta \in GF(q)$ and $\theta_1^{ca} - u_c\theta_1 \in GF(q)$. If we divide this by $u_c \neq 0$, we find that $ca - (q+1)t \in A(q, \theta_1)$ and $T_tM_cA(q, \theta) = A(q, \theta_1)$ follows since both sets have q elements.

3. A CRITERION FOR PRIMITIVE QUADRATICS

I will prove a new criterion for a quadratic $X^2 - uX + v$ over GF(p), p an odd prime, to be primitive, i.e., with a root θ , which is a primitive element in $GF(p^2)$. I am looking for a criterion which is suitable for computations and faster than the one in Lemma 2.2. There is a criterion by Bose, Chowla and Rao, Theorem 3A in [2], which depends on cyclotomic polynomials. I do not think it is what I am looking for, but I have use of the *integral order* of $\alpha \in GF(p^2)$. It is the least positive number n for which $\alpha^n \in GF(p)$. I found this notion in [2].

I will need polynomials $Q_m(X)$ of degree $m \geq 0$ defined recursively by

(3.1)
$$Q_0(X) = 1, \qquad Q_1(X) = X,$$

(3.2)
$$Q_{m+1}(X) = XQ_m(X) - Q_{m-1}(X) \text{ when } m \ge 1.$$

Lemma 3.1. Let α be a root of the irreducible quadratic $X^2 - uX + v$ over GF(p) with $u, v \neq 0$. Write $u^2/v = w$ and let n = 2(m+1). Then $(\alpha^2/v)^n = 1$ if and only if $Q_m(w-2) = 0$.

Proof. We have $(\alpha^2+v)^2=u^2\alpha^2$. Hence $\alpha^4+\dot{v}^2=(u^2-2v)\alpha^2$ and

(3.3)
$$(\alpha^2/v) + (v/\alpha^2) = w - 2.$$

Write $\alpha^2/v = \beta$ for brevity. Observe that $\beta \neq \pm 1$. Hence $\beta^2 - 1 \neq 0$.

Assume that $\beta^n = 1$, n = 2(m+1). If we divide $\beta^n - 1 = 0$ by $\beta^2 - 1 \neq 0$ we find $\beta^{2m} + \beta^{2m-2} + \cdots + 1 = 0$. Divide this by β^m . Now

(3.4)
$$\beta^m + \beta^{m-2} + \dots + \beta^{-m} = 0.$$

The left-hand side of (3.4) can be written as a polynomial in $\beta + \beta^{-1}$. In fact, it is $Q_m(\beta + \beta^{-1})$. For obviously $Q_1(X) = X$, $Q_2(X) = X^2 - 2$ and (3.2) follows since $(\beta + \beta^{-1})Q_m(\beta + \beta^{-1}) = (Q_{m+1} + Q_{m-1})(\beta + \beta^{-1})$. Since $\beta + \beta^{-1} = w - 2$ by (3.3), we have $Q_m(w-2) = 0$.

Conversely, assume that $Q_m(w-2)=0$. Then, working backward, we find that $\beta^n=1$.

Lemma 3.2. If $\alpha^m \in GF(p)$ and n is the integral order of α , then n|m.

Proof. Write m = kn + r, $0 \le r < n$. Then $\alpha^r = \alpha^m (\alpha^n)^{-k} \in GF(p)$ and r = 0 follows by the definition of n.

Theorem 3.1. Consider a quadratic $X^2 - uX + v$ with $u, v \in GF(p), v \neq 0$ and p an odd prime. Write $u^2/v = w$. The quadratic is primitive if and only if the following conditions are satisfied ((iv) or (iv'))

- (i) v is primitive (mod p),
- (ii) $w \not\equiv 0$ is a quadratic nonresidue (mod p),
- (iii) w-4 is a quadratic residue \pmod{p} ,
- (iv) $Q_m(w-2) \not\equiv 0 \pmod{p}$ when $m \leq [(p+1)/6] 1$,
- (iv') for all odd primes q dividing p+1 $Q_{m(q)}(w-2) \not\equiv 0 \pmod{p}$, where m(q)=((p+1)/2q)-1.

Proof. When we prove the necessity of one condition we may assume that the preceding ones are satisfied.

Condition (i) is necessary by Lemma 2.2(ii). Assume that (i) holds. Then v is nonsquare in GF(p). It follows that w is nonsquare in GF(p) (u=0 is impossible). This gives (ii). A primitive quadratic is irreducible. Then the discriminant u^2-4v must be nonsquare in GF(p). If we divide by nonsquare v we will get a square by the rules. This is (iii).

Assume that the conditions (i)–(iii) are satisfied. The quadratic is then irreducible and we have $v = \theta^{p+1}$ by Lemma 2.1, where θ is a root.

Assume that $Q_m(w-2) \equiv 0 \pmod{p}$ for some $m \leq \lfloor (p+1)/6 \rfloor - 1$. By Lemma 3.1 we have $1 = (v/\theta^2)^n = \theta^{(p-1)n}$ with $n \leq (p+1)/3$. This is impossible when θ is a primitive element in $GF(p^2)$. This gives (iv) and (iv').

Assume that (i)–(iii) and (iv') are satisfied. Let n be the integral order of θ . Since $\theta^{p+1} = v \in GF(p)$, p+1=kn follows by Lemma 3.2.

Note that v is nonsquare in GF(p) and $v = \theta^{p+1} = (\theta^n)^k$, $\theta^n \in GF(p)$. It follows that k is an odd integer. We claim that k = 1.

Assume that k > 1. Let q be an odd prime divisor of k. Then $\bar{n} = (p+1)/q$ will be a multiple of n = (p+1)/k. Observe that $(v/\theta^2)^n = \theta^{n(p-1)} = 1$ since $\theta^n \in GF(p)$. Then we have $(\theta^2/v)^{\bar{n}} = 1$. By Lemma 3.1 it follows that $Q_{m(q)}(w-2) \equiv 0 \pmod{p}$, a contradiction to (iv'). Therefore k = 1 and n = p + 1.

We have proved that the integral order of θ is p+1. I will prove that this implies that θ is primitive. If $N = \operatorname{order}(\theta)$, then $\theta^N = 1$ and we have $n \mid N$ by Lemma 3.2, i.e., $p+1 \mid N$. Write N = (p+1)a and we find that $1 = \theta^N = v^a$. Since v is primitive in GF(p), it follows that $p-1 \mid a$. Hence $N = p^2 - 1$, which was to be proved.

In calculations using a computer one could use (iv) and (3.1), (3.2). If the calculations are done by hand, then (iv') is better. In both cases start with a list L1 of all quadratic nonresidues (mod p). The length of this list is (p-1)/2. Delete

from this list all integers w for which $w-4 \pmod{p}$ belongs to the list. Then we obtain a list L2, which is about half as long (the length of L2 is (p+1)/4 when -1 is a quadratic nonresidue \pmod{p} and (p-1)/4 when -1 is a quadratic residue \pmod{p}). Then go to (iv) or (iv') and check the numbers in L2. Suppose we have found a number w, which satisfies all four conditions. Then find a primitive element \pmod{p} from a table and determine u such that $u^2 \equiv vw \pmod{p}$. Then we have the coefficients u and v of a primitive polynomial. If we apply (iv) or (iv') to all numbers on the list L2 we may determine all primitive quadratic polynomials.

It is easy to prove by induction over $m \geq 1$ that

$$Q_m(X) = \sum_{i=1}^{\lfloor m/2 \rfloor} (-1)^i \binom{m-i}{i} X^{m-2i}.$$

Example 3.1. Let p=29. The odd primes dividing p+1 are 3 and 5. We find that m(3)=4 and m(5)=2. We have $Q_2(X)=X^2-1$, $Q_4(X)=X^4-3X^2+1$. The list of quadratic nonresidues is $L1=\{2,3,8,10,11,12,14,15,17,18,19,21,26,27\}$. We delete all w for which w-4 belongs to the list and find $L2=\{3,8,10,11,17,26,27\}$. From L2 we delete "3" since 3-2=1 is a root of Q_2 and we delete "8" and "26" because 6 and 24 are roots of Q_4 (mod 29). There remains: 10, 11, 17, 27, which satisfy conditions (ii), (iii) and (iv'). There are $\varphi(28)=12$ primitive elements v in GF(29). Hence there are $4\cdot 12\cdot 2=96$ primitive polynomials (4 numbers w, 12 numbers v, and 2 numbers u for each combination of v and u). This gives 192 primitive elements in $GF(29^2)$ in agreement with $\varphi(29^2-1)=192$. If we choose w=10 and v=2, we find u=7 (or -7) and X^2-7X+2 is a primitive polynomial (mod 29).

Corollary. If $p = 2^k - 1$ is a (Mersenne) prime or if p = 2q - 1 for an odd prime q, then the conditions (i)–(iii) are necessary and sufficient for the quadratic $X^2 - uX + v$ to be primitive.

Proof. In the first case (iv') is vacuously satisfied. In the second case m(q)=0 and $Q_0=1$.

4. A VERY FAST CONSTRUCTION

There is a new construction of B_2 -sequences by I. Z. Ruzsa in [6], Theorem 4.4, which gives B_2 -sequences of the size p-1 for each odd prime p. The computations are straightforward and therefore very fast. I have extended the construction by the introduction of a factor f, an integer in $1 \le f < p-1$, which is relatively prime to p-1. Let g be a primitive element mod p and define

$$(4.1) R(p,f) = \{ pfi + (p-1)g^i \bmod p(p-1) \colon 1 \le i \le p-1 \}.$$

The integers of R(p, f) are smaller than p(p-1).

Theorem 4.1. R(p, f) is a B_2 -sequence modulo p(p-1).

Proof. Let $pf(i+j)+(p-1)(g^i+g^j)\equiv a\ (\mathrm{mod}\ p(p-1))$ be the sum of two elements. Then we find

$$(4.2) g^i + g^j \equiv -a(\operatorname{mod} p)$$

and $f(i+j) \equiv a \pmod{p-1}$. Since f is relatively prime to p-1, there is an integer h such that $fh \equiv 1 \pmod{p-1}$. It follows that $i+j \equiv ah \pmod{p-1}$ and we have

by Fermat's little theorem

$$(4.3) g^i g^j \equiv g^{ah} \pmod{p}.$$

By (4.2) and (4.3) g^i and g^j are the roots of $X^2 + aX + g^{ah} = 0$ in GF(p). Hence, g^i and g^j are unique and determine $\{i,j\}$ uniquely.

If we replace the primitive element g by another primitive g^b we will get R(p,fd), where $bd \equiv 1 \pmod{p-1}$. If we multiply R(p,f) by an integer c relatively prime to p(p-1) we get a translate of R(p,fc). Thus we have essentially only $\varphi(p-1)$ B_2 -sequences for each prime p. This "count" is much smaller than the count of the Bose-Chowla sequences $A(p,\theta)$. The estimates for C using R(p,f) are worse than those of $A(p,\theta)$.

References

- R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment. Math. Helv. 37 (1962-63), 141-147. MR 26:2418
- 2. R. C. Bose, S. Chowla and C. R. Rao, On the integral order (mod p) of quadratics $x^2 + ax + b$, with applications to the construction of minimum functions for $GF(p^2)$ and to some number theory results, Bull. Calcutta Math. Soc. **36** (1944), 153–174. MR **6**:256b
- P. Erdös, Quelques problèmes de la théorie des nombres, Monographies de l'Enseignement Math., No. 6 (Genève 1963), Problème 31. MR 28:2070
- P. Erdös and P. Turán, On a problem in additive number theory, J. London Math. Soc. 16 (1941), 212–215; ibid 19 (1944), 208.
- B. Lindström, An inequality for B₂-sequences, J. Comb. Theory 6 (1969), 211–212. MR 38:4436
- I. Z. Ruzsa, Solving a linear equation in a set of integers, Acta Arith. 65 (1993), 259–282.
 MR 94k:11112
- 7. Z. Zhang, Finding finite B_2 -sequences with larger $m a_m^{1/2}$, Math. Comp. **63** (1994), 403–414. MR **94i**:11109

Department of Mathematics, Royal Institute of Technology, S-100 44, Stockholm, Sweden

Current address: Turbingränd 18, S-17675 Järfälla, Sweden